

 Sand Manufacturing Technology & Its Evolution in India

RIVER SAND MINING: RISKS & SUSTAINABLE ALTERNATIVE

LARSEN & TOUBRO

- Ecological Imbalance
- Affecting Aquatic Life
- Reduction in Water Table
- Ground Water Depletion
- Water Scarcity
- Detrimental Effect on Civil Structures on Rivers (Bridges / Dams)
- Destruction of flora and fauna of surrounding areas
- Dredging / Transportation ->
 Pollution -> Higher Carbon Footprint

SUSTAINABLE ALTERNATIVE TO RIVER SAND: E7

SAND QUALITY ASPECTS AND ITS EFFECT ON CONCRETE

Concrete Strength Sand Gradation Workability **Uniformly Graded or** Too coarse or Too fine? **Durability** Sand Particle Shape Quality **Finish** Rounded / Equi-dimensional or Flaky? Cement Cleanliness Consumption Free from Clay / Silt? Admixture i.e Filler Content? Consumption (%age of Ultra-fines < 150 microns)

"GLOBALLY, KEMCO 'e-7' IS THE ONLY **TECHNOLOGY** WHICH **ADDRESSES ALL 3 QUALITY ASPECTS IN** ONE **INTEGRATED PLANT & CAN PRODUCE** SAND OF **DESIRED 'FM' IN AN AUTOMATED** PROCESS"

Inconsistent River Sand Gradation

River Sand Too coarse in Mumbai, required screening and other processing

Impurities in River Sand

PRESENT SCENARIO

LARSEN & TOUBRO

willagers protest 212, 11, 2043 and Chailpur villagers protest 212, 11, 2043 and Chailpur villagers protest 2012, 11, 2043 and of Dedasan and Chailpur villagers protest 2012, 11, 2043 and Chailpur villagers 2012, 11, 2043 and willagers protest illegal sand minus

Surat: Geology department of the state government has decided to auction

18 trucks, from Tapi riverbed during the raid carried out on April, 17, 2013

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as dear as gold in Hassan

Now, sand is as Paul John, TNN June Sidents of Deciasion, protesting under the Streets, protesting under the Sabarmati river.

By BR Udaya Kumar; 22nd HASSAN: At present one has the Sabarmati river.

By BR Udaya Kumar; 22nd HASSAN: At present one has the Sabarmati river.

Sand Mining along the Sabarmati river.

Kheralu taluka have taken to the streets, protesting under the Sabarmati river.

By BR Udaya Kumar; 22nd HASSAN: At present one has the Sabarmati river.

Sand Mining thrives in Satluj river bed in Satluj river sand dunes Dinesh K Sharma, TNN Sep 2, 2012, 02.26AM IST small sand dunes, illegal mining or sand on the pariks of Saluy III

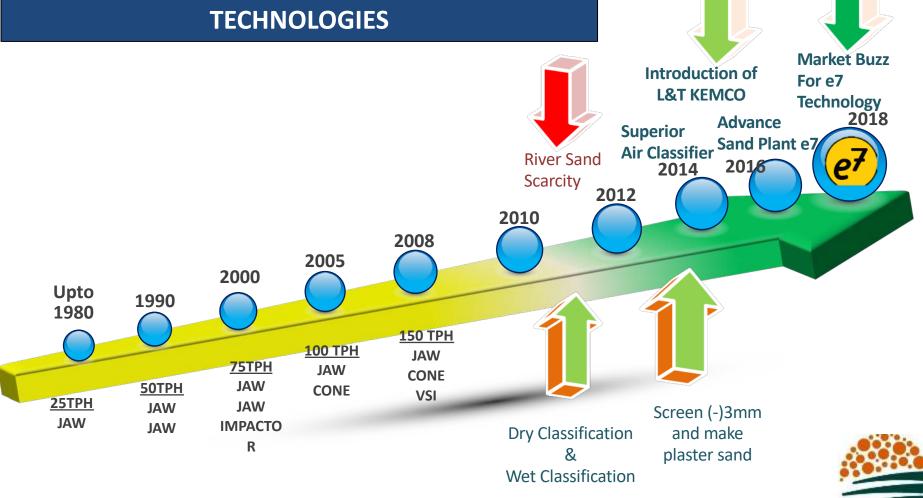
small sand dunes, illegal mining or sand on the pariks of Saluy III

small sand dunes, illegal mining or sand on the pariks of Saluy III

findia's illegal sand mining fuels boom, ravages

May 19, 2012 Washington Post

fire Maharashtra tehsila Officially, India uses more than 400 million tons of sand for construction in a year, but 5, environmental activists say the illegal mining pushes the real figure over a billion fire Maharashtra tehsildar's vehiclettp://articles.washingtonpost.com


Press Truet of India 1771 cognizable offence : Cabinet Press Trust of India | Thursday May 3, 2012 Cognization Cogniz A tehsildar escaped unhurt ...Jalgaon district of sand extraction: Deccan Herald Dredging Has Hit Projects: Builders

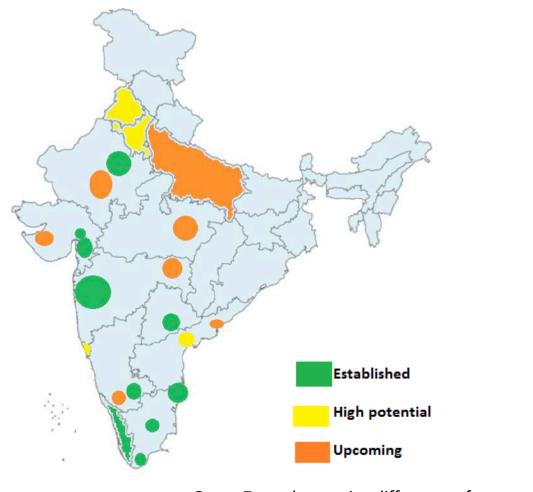
KOCHI: The ban on sand mining in the district is and in the district is not proving effective... Sand mining: NGT sticks to stand, ban to stay in MP To Complete Pending Projects Maharashtra Developers Rageshri Ganguly, TNN | Aug 1, 2015, 08.03PM IST

Import Sand Mon Oct 26 2015 | PROPGUIDE

EVOLUTION OF SAND MANUFACTURING TECHNOLOGIES

Use of Artificial Sand

Artificial Sand used in Major construction in Maharashtra, Andhra Pradesh, Kerala, Karnatakata


Place - Sand Plant Demand Driver & Geographical Spread

Geographic Distribution

i
i
cal
oil
re
oad
da
abad
ar
r
te
tate
a,

Demand of

Non- Availability of river sand (bans) i.e. **Artificial Sand \alpha** (Prices of River Sand \Rightarrow Cost of Crusher **Dust + Cost of Processing Crusher Dust)**

Green Zones have price difference of > Rs. 300 - Rs. 1000 / ton Between Crusher Dust and River Sand Sand Processing Cost in e7 Plant @ Rs. 250/ton,

Market Segregation:

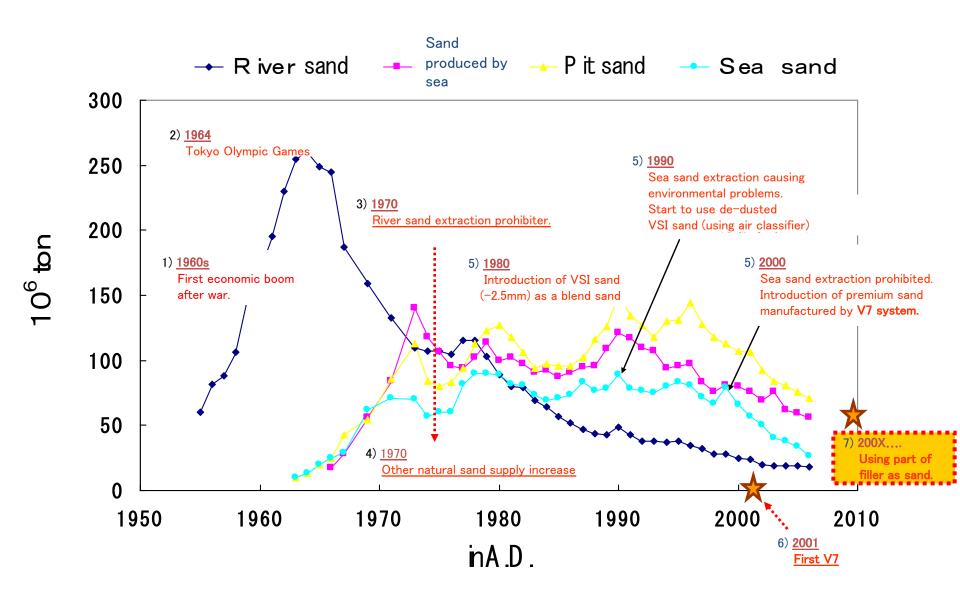
Established:

River Sand Price Crusher Dust Price >> Rs. 250/Ton

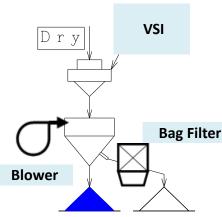
High Potential:

River Sand Price Crusher Dust Price >Rs. 250/Ton

Upcoming: River Sand Price -**Crusher Dust** Price ~ Rs. 250/Ton


The World's Most Advanced Dry Sand Manufacturing Systems

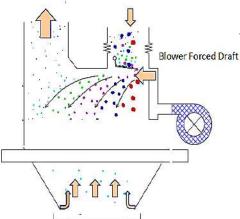
L&T collaborated with Kemco, Japan to introduce World's most advanced Sand Manufacturing Technology in India and other select countries....



Sand supply in Japan for last 60 years

By 2010 River sand completely replaced by Kemco Sands

IMPROVED AIR CLASSIFIED SAND


Suppliers:

- L&T-Kemco

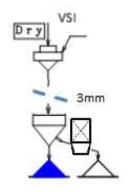
Air Classification with Forced Air Circulation

Dust Collector Suction from Feed opening

- L&T- Kemco Air Classification (SAC) Technology –
 - Forced Air Circulation apart from suction from bag filter
- PLC Controls to adjust suction volume and blower speeds

Issues:

- Coarse Product
- Flaky Shape
- Difficulty in handling material in excess of 4% moisture


e-Sepa - AIR CLASSIFIED & SCREENED SAND

-3mm PLASTER SAND MANUFACTURING METHOD

Concrete

Sieve Mesh

Benefiting

Suppliers:

- L&T- Kemco in Dry Process

In Wet-Process...

Sandvik +CDE in wetprocess

L&T- Kemco Air Screening Technology (e-Sepa) –

- Improved Screen Efficiency due to forces air circulation
- PLC Controls to adjust suction volume and blower speeds

Issues:

(-) 150 u

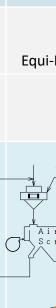
(-)3.0mm (+) 0.15mm

- Productivity
 of system
 due to recirculation
 of +3-5mm
- Flaky Shape
- Difficulty in handling material in excess of 2% moisture

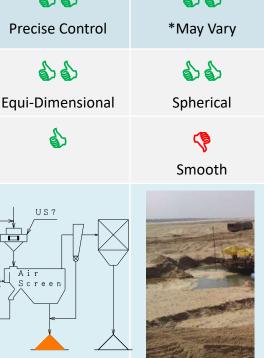
ADAVANCED SAND MANUFACTURING SOLUTIONS

COMPARISON OF SANDS -DIFFERENT TECHNOLOGIES										
Sand Quality	Cone Sand (Crusher Dust)	VSI Sand (Crusher Dust)	VSI -> Washed Sand	VSI -> Air Classifie d Sand	VSI-> Screen @3mm-> Classifier/ Washed	e7 Sand Plant	Natural River Sand			
Overall Grading	7	7	7	7		Precise Control	*May Vary			
Cleanliness / Ultra-fines	? Dusty	P D Usty				Precise Control	*Chances of Clay			
Fineness Modulus	Very Coarse	Cess Coarse	Very Coarse	99		Precise Control	₷			
Shape	() () Very Flaky	% Less Flaky	? Less Flaky	Less Flaky	\forall Less Flaky	Equi-Dimensional	Spherical			
Surface Finish/ Interlock	% Very rough				&		Smooth			
		Dry VSI	Į	VSI	Dry VSI	US7				

→ 5mm



Cone


► 5mm

→ 5mm

Flow

→ 3mm

Case: Shri Krishan Grit Co. LARSEN & TOUBRO

M/s. Shri Krishan Grit Co. Kotputli

Customer Profile: Established building contractor from Delhi.

Experienced in Crushing & Sand Manufacturing

Integrated to Metso make 3 Stage Plant (Jaw+ Cone+ VSI)

Product: Concrete Sand IS 383 Zone -II, 2.7FM

Feed Rate to e7 : 60 TPH Feed Material : Granite

Feed Materia Size: 0/3.5 - 10 mm

Production cost : ~ Rs. 40 (wear Cost)+ Rs. 60 (Power and

other Misc.)

Product Issue : High amount of 75-300 micron & Low 300-

1.18micon due to typical material crystalline

character.

Solution : Separate Screen to use to screen out excess 75-

300 micron.

* This materials are good to be more in sand. Separately also

salable for dry mix mortar.

	Product
	FM 2.98
Size	% Passing
4.75	100
2.36	76.56
1.18	49.06
0.6	42.24
0.3	32.66
0.15	15.67

e7 ENGINEERED CONCRETE SAND

Quality Sand of Mumbai Plant with improved Water absorption: 2.78

Date: 23-03-20

Page 1 of 1

Test Order/Report No: BVIPL: EA.: 25941C/1636/I/2019 REPORT Date of Reciept: 15.09.2017

LBT - STEC JV-MUMBAI

L and T STEC Metro 3, Package 7 Project Office, 1st Floor,

Wycel Administrative Building, Opp.Seepz Gate No.1, MIDC, Andheri-East, Mumbai-400093

TEST REPORT ON PHYSICAL PROPERTIES OF FINE AGGREGATE

Source of Sample Number of Sample Tested Sample supplied by the customer. 02(Two only)

Customer's Reference

LT-STEC-AAD-QAS-P07-QS-233 dated 11:03:2017

Condition of Sample Satisfactory UDE

17008361

Source* Stone Crusher at Thone

Project* Period of Test UGC 01 & UGC 07 of Mumbal Metro Project

20.03.2017 to 22.03.2017

1. SIEVE ANALYSIS: AS PER IS 2386 PART 1-1963 RA 2011:

SL Sieve		96.8	ossing .		LIMITS AS P	ER IS 383 -2016	
No.	Size	Sample 1 CRF- Feed	Sample 2 CRF- Produce	ZONE	ZONEII	ZONEIII	29
1	10	100.00	100.00	100	100	100	
2	4.75	74.30	100.00	90-100	90-100	90:100	- 9
3	2.36	50.10	94.60	60-95	75-100	85-100	- 9
A	1.18	28,80	60.60	30-70	55-90	75-100	9
5	0.600	19.00	36.90	15-34	35-59	60-79	8
6	0.300	13.20	20.00	5-20	8-30	12-40	
7	0.150	9.30	9.10	0-10	0-10	0-10	
11.5	nemesi.	4.05	2.79			to 20 %. This doe	

3. PHYSICAL TEST: IS 2386 PARY 3. 1963 HA 2011

91.		RESE	RTS
No.	Test conducted	Sample 1 CRF- Feed	Sam CRF- P
1	Water Absorption (%)	2.96	2.
2	Material finer than 75 µ (%)	9.80	6.

* As furnished by the customer.

Modulus

Note: 1. The results rulate only to the items tested.

2. Report shall not be reproduced except in full, without the written approval of the lab.

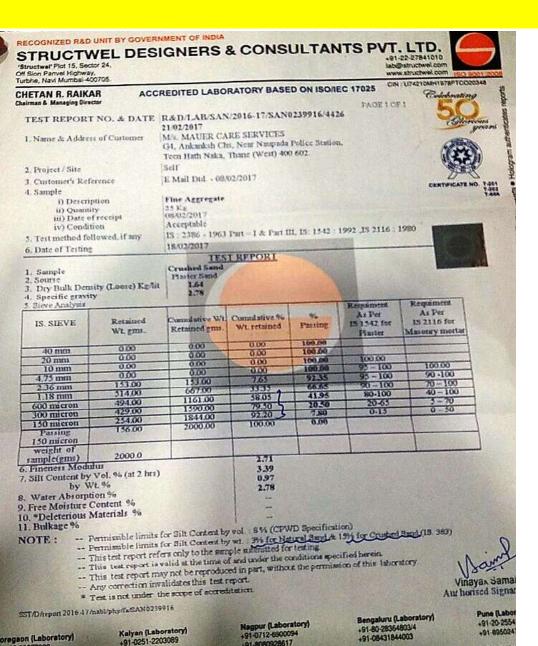
3. Any correction invalidates this report.

For Bureau Veritas (India) Pvt. Ltd. Construction Services Laboratory

% allowance permitted in CL6.3 applying the other sies

SIEVE ANALYSIS: AS PER IS 2386 PART 1-1963 RA 2011:

SI. Sieve		16.5	assing		LIMITS AS PER 15 383 -2016				
No.	Size mm	Sample 1 CRF-Feed	Sample 2 CRF- Produce	ZONE I	ZONEII	ZONE III	ZONE IV		
1	10	100.00	100.00	100	100	100	100		
1	4.75	74.30	100.00	90-100	90-100	90-100	95:100		
3	2.36	50.10	94.80	60-95	75-100	85-100	95-100		
4	1.18	28.80	60.60	30-70	55-90	75-100	90-100		
5	0.600	19.00	36.90	15-34	35-59	60-79	80-100		
6	0.300	13.20	20.00	5-20	8-30	12-40	15-50		
7	0.150	9.30	9.10	0-10	0-10	0-10	0-15		
	neness odulus	4.05	2.79	0.150 mm Sies	ves is increased	s, the permissible to 20 %. This doe 3 applying the off	s not affect the		


PHYSICAL TEST: IS 2386 PART 3 -1963 RA 2011

SI.	12/2004/00/00/00/00	RESU	RTS
No.	Test conducted	Sample 1 CRF- Feed	Sample 2 CRF- Produce
1	Water Absorption (%)	2.96	2.56
2	Material liner than 75 µ (%)	9.80	6.70

00NOW2136

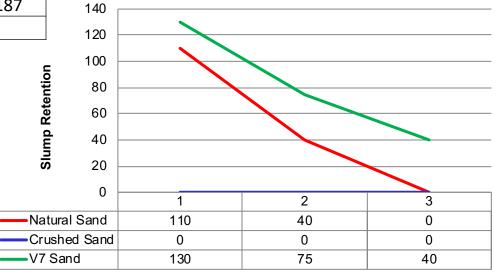
Quality Sand of Mumbai Plant with improved Water absorption: 2.78

0502

+91-8080928617

ustomer Support : +91-9323376991/8323376992

- Gradation % Passing: -2.5mm ~93%; -1.18mm ~67%; -0.6mm~42%; 0.3mm ~21%; 0.15mm -7.5%
- $FM \sim 2.7$
- Silt ~0.97%
- Water Absorption ~2.78



Design Mix for Laboratory trials at ACC

Concrete Trails For V7 Study							
Concrete Strength Class	M	30					
Cement Content (kg / m3)	43	30					
Concrete Mix Design	n (Kg/m3)						
Cement	430						
CAI	31%	557					
CAII	32%	575					
Fine Aggregates	37%	665					
Water	0.42	187					
A/ C Ratio	4.:	18					

SLUMP TESTING OF CONCRETE

Laboratory Trial results at ACC

Workability / Compressive Strength / Cohesivity Tests Natural Sand vs Crusher Sand vs e7 Sand

Code	Wor	kability (ı	mm)	Compressive Strength N/mm2		Bulk Density	•		Tempera ture	Cohesivity I	Remarks	
	0	30	60	3 Days	7 Days	28 Days	(Kg/m3)	Gravity	Gravity Sand			
05.03.12/NS/01	110	40	0	22.50	28.41	UT	1.69	3.03	ı	30	Good	
05.03.12/CS/01	0	0	0	21.87	26.04	UT	1.66	2.76	I	29	Satisfactory	
05.03.12/e7/01	130	75	40	28.87	33.90	UT	1.60	2.73	II	29	Very Good	
06.03.12/NS/02	80	20	0	21.75	27.00	UT	1.69	2.90	ı	30	Good	
06.03.12/CS/02	0	0	0	20.79	25.23	UT	1.65	2.78	ı	30	Satisfactory	
06.03.12/e7/02	130	80	50	27.06	33.42	UT	1.60	2.83	II	29	Very Good	
07.03.12/NS/03	110	30	10	23.70	29.33	UT	1.68	2.97	I	29	Good	
07.03.12/CS/03	0	0	0	21.23	27.43	UT	1.63	2.70	ı	29	Satisfactory	
07.03.12/e7/03	130	70	40	29.35	33.42	UT	1.60	2.78	II	29	Very Good	
09.03.12/NS/04	80	30	0	20.47	UT	UT	1.68	3.10	ı	29	Good	
09.03.12/CS/04	0	0	0	19.44	UT	UT	1.65	2.68	I	28	Satisfactory	
09.03.12/e7/04	130	70	50	27.97	UT	UT	1.60	2.73	II	29	Very Good	

Laboratory Trial results at Sai Rydam RMC

Compressive Strength / Cement-Flyash Consumption Natural Sand vs Crusher Sand vs e7 Sand

Cu No	SOURCE	ID MADIC	CEMEN	TATIOUS	COMPRESSIVE S	TRENGTH(MPA)
Sr. No.	Material	ID MARK	Cement	Flyash	7days	28days
1	VSI Sand	CG-3	300	100	20.68	32.43
2	VSI Sand	CG-4	338	112	30.35	42.32
3	VSI Sand	CG-5	375	125	34.18	49.11
1	Classified Sand	HG-3	300	100	28.27	50.47
2	Classified Sand	HG-4	338	112	38.05	52.49
3	Classified Sand	HG-5	375	125	41.13	57.59
1	Skgc e7 Sand	DG-3	300	100	35.85	58.00
1	Skgc e7 Sand	DG-4	338	112	39.36	62.88
3	Skgc e7 Sand	DG-5	375	125	54.29	67.13
1	Vaitarna River Sand	EG-3	300	100	21.08	36.31
2	Vaitarna River Sand	EG-4	338	112	34.76	48.13
3	Vaitarna River Sand	EG-5	375	125	38.44	54.88
1	Local Crushed Rock fines	BG-3	300	100	18.57	32.98
2	Local Crushed Rock fines	BG-4	338	112	32.89	43.59
3	Local Crushed Rock fines	BG-5	375	125	32.90	46.95

GREEN ATIVE TO NATURAL SAND

NATURE FOR FUTURE

Thanks